for the:

ENVIRONMENTAL PRODUCT DECLARATION

as per /ISO 14025/ and /EN 15804/

Owner of the Declaration	Eternit NV
Programme holder	Institut Bauen und Umwelt e.V. (IBU)
Publisher	Institut Bauen und Umwelt e.V. (IBU)
Declaration number	EPD-ETE-20190179-CCC1-EN
Issue date	06.02.2020
Valid to	05.02.2025

EQUITONE Pictura / Natura Pro fibre cement sheets ETEX

www.ibu-epd.com / https://epd-online.com

LOGO

General Information

The EPD document is applicable at building level coupled with specific, recommended build-ups. Annex 1 and Annex 2 to the EPD provide all necessary details for the 2 build-up options in view of using them in combination with the EPD for EQUITONE **Pictura / Natura Pro** at building level, as a complete system.

Product

Product description / Product definition

EQUITONE Pictura / Natura Pro is an autoclaved calcium silicate Eternit fibre cement sheet produced at Neubeckum production plant, Germany.

Product processing/installation

The product use and installation instructions shall be followed for the specific applications where EQUITONE Pictura / Natura Pro is used. Build-up alternatives are presented in this annex include the environmental profiles of build-up option 1 for use at building level. Build scenario 1: Fastening of EQUITONE panels to facades using EQUITONE UNI-screw (EN 14567) or A2 (304) Stainless Steel ISR T20 Torx TTAP® screw fixed to a sub-construction of wooden framing. These recommendations apply to the most common areas of application.Consumption per m²: 2,389 kg wood, 0,033kg stainless steel screws and 0,018kg EPDM sealing tape.

LCA: Calculation rules

Declared Unit

The functional unit of the EPD is defined as: the production of 1 m² (thickness 8 mm)of a "EQUITONE Pictura / Natura Pro" sheets and its related impacts over cradle-to-grave life cycle stages, where the product's expected average reference service life is of 50 years.

Build-up option 1 is designed for the installation of 1m² of cement boards (be they EQUITONE TECTIVA or EQUITONE Pictura / Natura Pro or EQUITONE Pictura / Natura Pro, or other similar boards) with a thickness between 8 mm and 12 mm.

LCA: Scenarios and additional technical information

Transport to the building site (A4)

For this EPD the EQUITONE **Pictura / Natura Pro** product is installed in Germany. The transport to the building site of the additional build-up components is done by truck in 2 steps: (1) from the plant to the merchant, with big truck (16-32 t), (2) from the merchant to the building site (85% with big truck (16-32 t) and 15% with small truck (3,5 - 7,5 t)).

Name	Value	Unit
Plant to the merchant - distance	100	km
Merchant to the building site - distance	35	km

For the build-up, some of the components are first delivered to the Etex factory, after which they are shipped to the merchant. Thus, for the screws an additional distance of 300 km is added to Build 1, and for EPDM 190 km is added to both build options.

Installation into the building (A5)

The installation involves an amount of 0,0216 kWh per screw used to fix the EQUITONE **Pictura / Natura Pro** product, where 15 screws are necessary for the functional unit. However these inputs are fully allocated to EQUITONE **Pictura / Natura Pro** product, with no impacts for A5 allocated to the build-up.

System boundary

The EPD for EQUITONE **Pictura / Natura Pro** is a cradle to grave EPD with the following life cycle stages included: A1, A2, A3, A4, A5, B1-7, C1, C2, C3, C4 and D.

For the build-up scenarios the following life cycle stages are included: A1, A2, A3, A4, C2, C3, C4 and D. The impacts related to the life cycle stages A5, B1-7 and C1 are fully allocated to the EQUITONE Pictura / Natura Pro product.

Use phase B1-7

NameValueUnitFor Equitone Pictura / Natura Proover the 50 yearsof RLS, if correctly installed, there are no impacts forthe use phase. No impacts during the use phase areassociated with the build-up.

End of life

Dismantling (C1)

The dismantling of **Pictura / Natura Pro** involves the same amount of energy as for the installation, which is 0,0216 kWh per screw, where 15 screws are used. However they are fully allocated to the EQUITONE **Pictura / Natura Pro** product, therefore no impacts are alocated to the build-up.

Transport to EOL (C2)

The scenarios for the transport to EoL of the build-up compoments is presented below, where the transport mode in truck, 16-32 t.

- to recycling 800 km
- to incineration 150 km
- to landfill 50 km

Waste processing (C3) and disposal (C4)

At the end of life of the building the build-up components are disposed of according to the EoL

LOGO

scenarios. The EoL scenario in Germany for the buildup are based on EuroStat 2011 and are presented below.

Materials	Recycling/ Reuse	Incineration	Landfill
Wood	38%	60,17%	1,83%
EPDM	0%	97,05%	2,95%
Steel	95%	4,97%	0,03%

Reuse, recovery and/or recycling potentials (D), relevant scenario information Name Value Unit

1) energy recovery (or avoided production of energy) due to the incineration process¹ from waste disposal processes declared in module C4, as well as from the packaging materials disposed during the production stage and installation stage.

- For the Electricity part the following datasets were used accordingly:
 - Electricity, low voltage {BE}| market for | Cut-off, U
 - Electricity, low voltage {DE}| market for | Cut-off, U
- For the Thermal energy the following dataset was used:
 - Heat, district or industrial, natural gas {Europe without Switzerland}| heat production, natural gas, at industrial furnace >100kW | Cut-off, U
- Net energy efficiency of 20% for thermal energy and 10% for electric energy (using the Lower Heating Value of waste (LHV)

2) the benefits and loads related to the recycling processes (or avoided production of raw materials.

¹ The BE-PCR describes how benefits from exported energy should be quantified in module D for incineration processes which take place in Germany.

Build-up 1 for 1 m² EQUITONE Pictura / Natura Pro product

		OF THE	SYSTEN	BOUNE	DARY (X :	= INCLU	DED IN L	CA: MNI	D = MOD	ULE N	IOT DEC	_ARED)
PRODUCT STAGE				CONSTR PROC STA	ESS	USE STAGI	E	END OF LIFE STAGE				BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIE S
Raw material supply	Raw material supply Transport Manufactur ing		ing	Transport from the gate to the site Assembly		Use Phase		demolition		pr	Disposal	Reuse- Recovery- Recycling- potential
A1	A2		A3	A4	A5	B1-7	C1	C2		C3	C4	D
Х	X		Х	Х	Х	х	Х	Х		Х	Х	Х
RESULT	<u>'S OF T</u>	HE LCA	- ENVIR	ONMEN	TAL IMP/	ACT: dec	lared un	it and pr	oduct			
Param eter	Unit	A1	A2	A3	A4	A5	B1-7	C1	C2	C3	C4	D
	g CO ₂ -Eq.]	3.07E-0										
	CFC11-Eq											
	g SO ₂ -Eq.]	1.97E-0										
	(PO ₄) ³ -Eq. ethene-Eq.								1.58E-04 4.80E-05			
	g Sb-Eq.]	5.22E-0										
	[MJ]	4.72E+0										2 -7.01E+00
Ģ	GWP = Glo	bal warmind	potential; C									d water; EP =
	Eutrophicat	tion potentia	; POCP = F	DP = Deple ormation po fossil reso	tion potential tential of trop urces; ADPF	l of the strato	spheric ozor ne photoche pletion poten	ne layer; AP emical oxida tial for fossil	= Acidification nts; ADPE =	on potent	ial of land an	
Caption E	Eutrophicat	tion potentia	; POCP = F	DP = Deple ormation po fossil reso	tion potential tential of trop urces; ADPF	l of the strato oospheric ozo = Abiotic dep	spheric ozor ne photoche pletion poten	ne layer; AP emical oxida tial for fossil	= Acidification nts; ADPE =	on potent	ial of land an	d water; EP =
Caption E	Eutrophicat	tion potentia	; POCP = F - RESOU	DP = Deple ormation po fossil reso JRCE US	tion potential tential of trop urces; ADPF SE: decla A4	l of the strato oospheric ozo = Abiotic dep red unit	spheric ozor one photoche oletion poten and proc	ne layer; AP emical oxida tial for fossil duct	= Acidification nts; ADPE = resources	on potent = Abiotic (ial of land an depletion pote	d water; EP = ential for non-
Caption E RESULT Parameter	Eutrophicat	THE LCA	; POCP = F - RESOU A2	DP = Deple ormation po fossil reso JRCE US A3	tion potential tential of trop urces; ADPF SE: decla A4 0	a fithe stratoo oospheric ozoc = Abiotic dep ared unit A5	spheric ozor one photoche oletion poten and proc B1-7	ne layer; AP emical oxida tial for fossil duct C1	= Acidification nts; ADPE = resources C2	on potent = Abiotic (tial of land an depletion pote	d water; EP = ential for non-
Caption E RESULT Parameter PERE	Eutrophicat	tion potentia	; POCP = F - RESOU A2 0	DP = Deple ormation po fossil resor JRCE US A3	tion potential tential of trop urces; ADPF SE: decla A4 0 0	of the strato ospheric ozc = Abiotic dep red unit A5 0	spheric ozor one photoche oletion poten and proc B1-7	ne layer; AP emical oxida tital for fossil duct C1 0	= Acidificati nts; ADPE = resources C2	on potent = Abiotic (C4	d water; EP = ential for non- D
Caption E RESULT Parameter PERE PERM	Eutrophica SOFT Unit [MJ] [MJ]	HE LCA A1 0	; POCP = F - RESOL A2 0 0	DP = Deple ormation po fossil resor JRCE US A3	A4 9.90E-03	of the strato ospheric ozc = Abiotic dep red unit A5 0	spheric ozor ne photoche oletion poten and proc B1-7 0 0	ne layer; AP emical oxida tial for fossil Juct C1 0 0	= Acidificati nts; ADPE = resources C2 0	Abiotic o	C4	d water; EP = ential for non- D
Caption E RESULT Parameter PERE PERM PERT	Eutrophica SOFT Unit [MJ] [MJ] [MJ]	tion potentia HE LCA A1 0 0 5.43E+01	; POCP = F - RESOU A2 0 0 4.46E-02	DP = Deple ormation po fossil resor JRCE US A3 C C 2.02E-01	A4 9.90E-03 0 0 0 0 0 0 0 0 0 0 0 0 0	A5 0.00E+00	spheric ozor ne photoche oletion poten and proc B1-7 0 0 0 0.00E+00	ne layer; AP emical oxida tital for fossil duct C1 0 0 0.00E+00	= Acidificati nts; ADPE = resources C2 0 4.66E-02	Abiotic o	C4 0 0 0 0 0 2.12E-	d water; EP = ential for non- D 0 0 -6.99E+01
Caption E RESULT Parameter PERE PERM PERT PENRE	Eutrophica S OF T Unit [MJ] [MJ] [MJ]	HE LCA A1 0 5.43E+01 0	POCP = F RESOL A2 0 4.46E-02 0	DP = Deple ormation po fossil reso JRCE US A3 C 2.02E-01 C C C C C C C C C C C C C C C C C C C	A4 9.90E-03 0 0 0 0 0 0 0 0 0 0 0 0 0	A for the strato cospheric ozci = Abiotic dep ired unit A5 0 0 0 0.00E+00 0 0 0	spheric ozor ne photoche oletion poten and proc B1-7 0 0 0.00E+00 0	ne layer; AP emical oxida tital for fossil duct C1 0 0 0.00E+00 0	= Acidificati nts; ADPE = resources C2 0 4.66E-02 0 0 0	C3 6.39E	C4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	d water; EP = ential for non- 0 0 0 0 3 -6.99E+01 0 0
Caption E RESULT Parameter PERE PERM PERT PENRE PENRM	Eutrophical S OF T Unit [MJ] [MJ] [MJ] [MJ]	HE LCA A1 0 5.43E+01 0 0	POCP = F - RESOL A2 0 4.46E-02 0 0 0	DP = Deple ormation po fossil reso JRCE US A3 C 2.02E-01 C C C C C C C C C C C C C C C C C C C	A4 0 0 0 0 0 0 0 0 0 0 0 0 0	A for the strato cospheric ozci = Abiotic dep ired unit A5 0 0 0 0.00E+00 0 0 0	spheric ozor ne photoche oletion poten and proc B1-7 0 0 0.00E+00 0 0	ne layer; AP emical oxida duct C1 0 0.00E+00 0 0 0	= Acidificati nts; ADPE = resources C2 0 4.66E-02 0 0 0	C3 6.39E	C4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	d water; EP = ential for non- 0 0 0 0 3 -6.99E+01 0 0
Caption E RESULT Parameter PERE PERM PENRE PENRM PENRT	S OF T Unit [MJ] [MJ] [MJ] [MJ] [MJ] [MJ]	HE LCA A1 0 5.43E+01 0 6.43E+00	POCP = F RESOL A2 0 4.46E-02 0 4.36E+00	DP = Deple ormation po fossil reso JRCE US A3 (0 2.02E-01 (0 1.42E+00	A4 9.90E-03 9.941E-01 0.00 0.01 0.01 0.02	of the strato ospheric ozc = Abiotic dep ired unit A5 0 0 0.00E+00 0 0.00E+00	spheric ozor ne photoche letion poten and proc B1-7 0 0 0.00E+00 0 0.00E+00 0 0	ne layer; AP emical oxida tital for fossil duct C1 0 0 0.00E+00 0 0.00E+00	= Acidificati nts; ADPE = resources C2 0 4.66E-02 0 4.56E+00	C3 6.39E	Isl of land an depletion pot C4 0	d water; EP = ential for non- 0 0 0 0 0 -6.99E+01 0 0 0 0 2 -8.46E+00
Caption E RESULT Parameter PERE PERM PENRE PENRM PENRT SM	S OF T Unit [MJ] [MJ] [MJ] [MJ] [MJ] [MJ] [MJ] [Kg]	HE LCA A1 0 5.43E+01 0 6.43E+00 0	POCP = F RESOL A2 0 4.46E-02 0 4.36E+00 0	DP = Deple ormation pc fossil reso JRCE US A3 (0 2.02E-01 (0 1.42E+00 (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A4 0 9:90E-03 0 9:41E-01 0 0	of the strato ospheric ozc = Abiotic dep ired unit A5 0 0 0.00E+00 0 0.00E+00 0 0.00E+00 0	spheric ozor ne photoche oletion poten and proo B1-7 0 0 0.00E+00 0 0.00E+00 0	ne layer; AP emical oxida tital for fossil duct C1 0 0.00E+00 0 0.00E+00 0 0	= Acidificati nts; ADPE = resources C2 0 4.66E-02 0 4.56E+00 0	C3 6.39E	I of land an depletion pot C4 0	d water; EP = ential for non- 0 0 0 0 0 0 -6.99E+01 0 0 0 0 2 -8.46E+00 0
Caption E RESULT Parameter PERE PERM PENRE PENRM PENRT SM RSF	S OF T Unit [MJ] [MJ] [MJ] [MJ] [MJ] [MJ] [MJ] [Kg] [MJ]	HE LCA A1 0 5.43E+01 0 6.43E+00 0 0 0	FOCP = F - RESOL A2 0 4.46E-02 0 4.36E+00 0 0 0 0 0 0 0 0 0 0 0 0	DP = Deple ormation pc fossil reso JRCE US A3 (0 2.02E-01 (0 (1.42E+00) (0 (0 (0) (0) (0) (0) (0) (0) (0) (0	A4 0 0 9.90E-03 0 9.41E-01 0 0 0	of the strato ospheric ozc = Abiotic dep ired unit A5 0 0 0.00E+00 0 0.00E+00 0 0.00E+00 0 0.00E+00 0 0.00E+00 0	spheric ozor ne photoche oletion poten and proo B1-7 0 0 0.00E+00 0 0 0.00E+00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ne layer; AP emical oxida tital for fossil duct C1 0 0 0.00E+00 0 0.00E+00 0 0 0.00E+00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	= Acidificati nts; ADPE = resources C2 0 4.66E-02 0 4.56E+00 0 0 0 0 0 0 0 0 0 0 0 0	C3 6.39E	C4 0	d water; EP = ential for non- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES: declared unit and product										
Parameter	Unit	A1	A2	A3	A4	A5	B1-7	C1	C2	

Parameter	Unit	A1	A2	A3	A4	A5	B1-7	C1	C2	C3	C4	D	
HWD	[kg]	6.87E-06	2.73E-06	1.96E-06	6.09E-07	0	0	C	2.85E-06	1.86E-07	1.39E-07	-2.42E-05	
NHWD	[kg]	2.29E-01	2.04E-01	4.62E-02	4.22E-02	0	0	0	2.13E-01	2.31E-04	4.92E-02	-1.29E-01	
RWD	[kg]	3.77E-05	2.92E-05	5.45E-06	6.28E-06	0	0	0	3.06E-05	4.44E-07	2.22E-07	-3.87E-05	
CRU	[kg]	0	0	0	0	0	0	0	0	0	0	0	
MFR	[kg]	0	0	0	0	0	0	0	0	0	0	0.94	
MER	[kg]	0	0	0	0	0	0	0	0	0	0	1.45	
EEE	[MJ]	0	0	0	0	0	0	0	0	0	0	0	
EET	[MJ]	0	0	0	0	0	0	0	0	0	0	0	
Caption	HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components												